Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$[\mu_2-2,5-Dimercapto-1,3,4-thiadiazole(2-) \kappa^2 N:N$]bis(μ_2 -methanolato)- μ_3 -oxidotris[bis(4-fluorobenzyl)tin(IV)] benzene hemisolvate

Jun-Hong Zhang,* Chun-Lin Ma and Ru-Fen Zhang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: zhangjunhong@lcu.edu.cn

Received 27 June 2007; accepted 10 July 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.016 Å; R factor = 0.055; wR factor = 0.184; data-to-parameter ratio = 16.6.

The title complex, $[Sn_3(C_7H_7F)_6(CH_3O)_2(C_2N_2S_3)O] \cdot 0.5C_6H_6$, contains a unique μ_3 -OSn₃N₂O₂ central core with three fivecoordinated Sn atoms with distorted trigonal-bipyramidal geometries; the benzene molecule resides on a crystallographic inversion center (at the ring centroid). One Sn atom (with a C_2O_3 ligand set) has Sn-O bond lengths in the range 2.044 (4)–2.131 (5) Å; the remaining two Sn atoms (with C₂O₂N ligand sets) have Sn-O distances ranging from 2.038 (5) to 2.188 (5) Å. The two Sn-N bond lengths are 2.217 (5) and 2.225 (6) Å, and the six Sn-C bond lengths range from 2.125 (8) to 2.150 (8) Å. There are no clasical hydrogen bonds in the crystal structure.

Related literature

For related literature, see: ladder-type Sn₃O₃ arrangements (Puff et al., 1983), trinuclear RSnO clusters (Ma et al., 2007), a staircase Sn₄O₁₀ structure (Yin et al., 2006), related Sn ladder systems (Harrison et al., 1980), and van der Waals radii of Sn and N atoms (Hubeey et al., 1993).

Experimental

Crystal data

[Sn ₃ (C ₇ H ₇ F) ₆ (CH ₃ O) ₂ -	$\beta = 129.394 \ (4)^{\circ}$
$(C_2N_2S_3)O] \cdot 0.5C_6H_6$	V = 4979.1 (7) Å ³
$M_r = 1276.12$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 10.3309 (9) Å	$\mu = 1.68 \text{ mm}^{-1}$
b = 45.937 (4) Å	T = 293 (2) K
c = 13.5763 (8) Å	$0.18 \times 0.16 \times 0.08$

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.751,\;T_{\rm max}=0.877$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.184$ S = 1.019782 reflections

).08 mm 51752 measured reflections

9782 independent reflections 8279 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.048$

591 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.72 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -1.78 \text{ e} \text{ Å}^{-3}$

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Liaocheng University, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2020).

References

- Harrison, P.-G., Begley, M.-J. & Molloy, K.-C. (1980). J. Organomet. Chem. 186 213-236
- Hubeey, J.-E., Keiter, E.-A. & Keiter, R.-L. (1993). Principles and Applications of Inorganic Chemistry, 4th ed., pp. 121-124. New York: Harper Collins
- Ma, C. L., Sun, J. S. & Zhang, R. F. (2007). J. Mol. Struct. 833, 203-207.
- Puff, H., Bung, I., Friedrichs, E. & Jansen, A. (1983). J. Organomet. Chem. 254, 23 - 32
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Yin, H. D., Li, G., Gao, Z. J. & Xu, H. L. (2006). J. Organomet. Chem. 691, 1235-1241.

 $R = 4 - F - C_6 H_4 C H_2$

Acta Cryst. (2007). E63, m2161 [doi:10.1107/S1600536807033715]

$[\mu_2-2,5-Dimercapto-1,3,4-thiadiazole(2-)-\kappa^2N:N]$ bis $(\mu_2-methanolato)-\mu_3-oxido-tris[bis(4-fluorobenzyl)tin(IV)]$ benzene hemisolvate

J.-H. Zhang, C.-L. Ma and R.-F. Zhang

Comment

From Fig. 1, like other trinuclear organotin- μ_3 oxo clusters (Ma *et al.*, 2007), the complex (I) contains a tricyclic system formed from a N₂Sn₂O ring and two Sn₂O₂ rings: all three Sn atoms exhibit severely distorted trigonal bipyramidal configurations. The atoms Sn2 and Sn3 have similar environments, in which one O atom and two C atoms of the benzyl groups occupy the equatorial positions (C5, C12 and O1 for Sn2; C19, C26 and O1 for Sn3). The axial positions are occupied by one N atom of the HHdmt and one O atom of the methoxy group (N2 and O2 for Sn1; N1 and O3 for Sn3). The geometry of Sn1 is *cis-R*₂SnO₃, in which the axial positions are defined by O2 and O3 atoms of methoxy group, C33 and C40 atoms of benzyl groups and one O atom occupy the equatorial plane.

With regard to the role of reaction hydrolysis, three $[(C_7H_7F)_2Sn]$ units are bridged by one O atom and two O atoms of methoxy group, forming a trinuclear complex, containing two Sn₂O₂ rings. Three Sn atoms and three O atoms (Sn1, Sn2, Sn3, O1, O2, O3) comprise a fused ring system, which is similar to traditional hydrolytic products of ladder-type arrangement (Puff *et al.*, 1983), but different from the staircase structure of C₈₄H₁₄₈N₈O₁₀Sn₄ (Yin *et al.*, 2006). The Sn—O distances lies in the range 2.038 (5) to 2.188 (5) Å (Table 1), which are consistent with those Sn—O bonds in the ladder structure reported (Harrison *et al.*, 1980). All of above indicates that strong bridge-oxo coordination with Sn atoms exist in the complex. Moreover, the aromatic rings effectively surround the –O—CH₃ group.

The HHdmt ligand forms a five-membered ring, where two N atoms bond to the two Sn atoms to form another fivemembered N₂Sn₂O₁ ring. The Sn—N bond lengths [Sn2—N2 2.225 (6) Å and Sn3—N1 2.217 (7) Å] approach the covalent radii of Sn and N (2.15 Å) and are much shorter than the van der Waal's radii of Sn and N atoms (3.74 Å) (Hubeey *et al.*, 1993), proving that N is coordinated to Sn by strong chemical bonds.

Experimental

The 2,5-dimercapto-1,3,4-thiadiazole (1 mmol) was added to the solution of methanol 20 ml with sodium methoxide (2 mmol), and the mixture was stirred for 30 minutes, then di(4-fluorobenzyl)tin (3 mmol) was added to the mixture, continuing the reaction for 12 h at 318k. After cooling down to room temperature, this was then filtered. The solvent of the filtrate was gradually removed by evaporation under vacuum until a solid product was obtained. The solid was then recrystallized from benzene and colorless crystals suitable for X-ray diffraction was obtained (m.p. 356 K). Analysis, calculated for C₄₉H₁₅F₆N₂O₃S₃Sn₃: C 46.11, H 3.55, N 2.20; found: C 46.16, H 3.59, N 2.18%.

Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms, with thiadiazole C—H and methyl C—H distances at 0.96 Å. The $U_{iso}(H)$ values were set at $1.5U_{eq}(C)$ for all H atoms.

Figures

Fig. 1. The structure of the title complex (I), showing 30% probability displacement ellipsoids.

Fig. 2. Unit cell of the title complex (I).

$[\mu_2-2,5-Dimercapto-1,3,4-thiadiazole(2-)-\kappa^2N:N]bis(\mu_2-methanolato)-\mu_3-oxido-tris[bis(4-fluorobenzyl)tin(IV)] benzene hemisolvate$

Crystal data	
$[Sn_3(C_7H_7F)_6(CH_3O)_2(C_2N_2S_3)O]\cdot 0.5C_6H_6$	$F_{000} = 2516$
$M_r = 1276.12$	$D_{\rm x} = 1.702 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 356 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.3309 (9) Å	Cell parameters from 9782 reflections
b = 45.937 (4) Å	$\theta = 1.8 - 26.0^{\circ}$
c = 13.5763 (8) Å	$\mu = 1.68 \text{ mm}^{-1}$
$\beta = 129.394 \ (4)^{\circ}$	T = 293 (2) K
$V = 4979.1 (7) \text{ Å}^3$	Block, colorless
Z = 4	$0.18 \times 0.16 \times 0.08 \text{ mm}$

Data collection

Siemens SMART CCD area-detector diffractometer	9782 independent reflections
Radiation source: fine-focus sealed tube	8279 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.048$
T = 293(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.751, \ T_{\max} = 0.877$	$k = -56 \rightarrow 56$
51752 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.055$	H-atom parameters constrained
$wR(F^2) = 0.184$	$w = 1/[\sigma^2(F_o^2) + (0.123P)^2 + 12.502P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.003$
9782 reflections	$\Delta \rho_{max} = 0.72 \text{ e} \text{ Å}^{-3}$
591 parameters	$\Delta \rho_{\rm min} = -1.78 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn1	1.09057 (6)	0.872437 (11)	0.26253 (5)	0.04148 (16)
Sn2	0.99142 (6)	0.942464 (10)	0.27698 (4)	0.03669 (15)
Sn3	0.68330 (6)	0.880017 (10)	0.12982 (5)	0.03655 (15)
S1	0.2941 (3)	0.90904 (5)	0.0062 (3)	0.0677 (6)
S2	0.4469 (3)	0.96904 (4)	0.1112 (2)	0.0548 (5)
S3	0.7698 (3)	1.00416 (5)	0.2581 (2)	0.0594 (5)
F1	0.8398 (10)	0.88068 (14)	0.6454 (7)	0.094 (2)
F2	0.5363 (10)	0.91417 (15)	-0.3438 (5)	0.104 (2)
F3	0.7676 (14)	0.74570 (16)	0.3886 (12)	0.152 (4)
F4	0.2991 (11)	0.76864 (14)	-0.2917 (7)	0.112 (3)
F5	0.9696 (12)	0.77323 (17)	-0.1815 (9)	0.125 (3)
F6	1.5752 (11)	0.75227 (17)	0.4952 (8)	0.120 (3)
01	0.9093 (5)	0.90072 (10)	0.2213 (4)	0.0384 (10)
O2	1.1931 (6)	0.91524 (11)	0.3167 (5)	0.0492 (13)
O3	0.8669 (6)	0.84801 (11)	0.1676 (5)	0.0456 (12)
N1	0.6135 (7)	0.92511 (12)	0.1374 (6)	0.0386 (13)
N2	0.7269 (7)	0.94780 (12)	0.1975 (5)	0.0380 (12)
C1	0.4561 (10)	0.93234 (17)	0.0851 (8)	0.0454 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C2	0.6593 (9)	0.97345 (16)	0.1925 (7)	0.0440 (16)
C3	1.3556 (10)	0.9245 (2)	0.3585 (10)	0.065 (2)
H3A	1.4285	0.9080	0.3885	0.097*
H3B	1.4033	0.9385	0.4262	0.097*
H3C	1.3423	0.9333	0.2883	0.097*
C4	0.8373 (12)	0.81699 (16)	0.1369 (8)	0.056 (2)
H4A	0.8231	0.8135	0.0608	0.084*
H4B	0.7381	0.8111	0.1236	0.084*
H4C	0.9314	0.8060	0.2061	0.084*
C5	1.1099 (11)	0.95023 (19)	0.4733 (7)	0.054 (2)
H5A	1.2292	0.9467	0.5247	0.065*
H5B	1.0943	0.9705	0.4841	0.065*
C6	1.0403 (9)	0.93103 (17)	0.5198 (6)	0.0423 (16)
C7	0.8973 (11)	0.93993 (18)	0.5021 (8)	0.0502 (18)
H7	0.8468	0.9576	0.4622	0.060*
C8	0.8298 (12)	0.9226 (2)	0.5436 (9)	0.063 (2)
H8	0.7330	0.9284	0.5294	0.076*
C9	0.9057 (13)	0.8974 (2)	0.6044 (8)	0.062 (2)
C10	1.0485 (13)	0.8888 (2)	0.6276 (8)	0.064 (2)
H10	1.1011	0.8716	0.6716	0.077*
C11	1.1143 (10)	0.9055 (2)	0.5860 (7)	0.056 (2)
H11	1.2126	0.8995	0.6029	0.067*
C12	0.9649 (11)	0.96861 (18)	0.1346 (7)	0.0516 (19)
H12A	0.9217	0.9876	0.1320	0.062*
H12B	1.0741	0.9714	0.1574	0.062*
C13	0.8495 (9)	0.95493 (15)	0.0050(7)	0.0399 (15)
C14	0.9149 (11)	0.9391 (2)	-0.0428(8)	0.057 (2)
H14	1.0302	0.9375	0.0051	0.068*
C15	0.8075 (14)	0.9260 (2)	-0.1618 (9)	0.068 (3)
H15	0.8498	0.9159	-0.1955	0.082*
C16	0.6388 (13)	0.9280 (2)	-0.2283(7)	0.061 (2)
C17	0.5720 (11)	0.94291 (17)	-0.1855(8)	0.053(2)
H17	0.4564	0.9443	-0.2338	0.064*
C18	0.6791 (10)	0.95621 (16)	-0.0677(7)	0.0450 (17)
H18	0.6337	0 9664	-0.0368	0.054*
C19	0.6611 (15)	0.8640(2)	0 2674 (11)	0.070 (3)
H19A	0.7386	0.8749	0.3458	0.084*
H19R	0 5489	0.8684	0.2364	0.084*
C20	0.6921 (10)	0.83251 (17)	0.2988 (7)	0.0452(17)
C21	0.5731 (12)	0.8119(2)	0.2202(9)	0.067(2)
H21	0.4712	0.8178	0.1447	0.081*
C22	0.5989(17)	0.7829(2)	0.2487(14)	0.086 (3)
H22	0.5172	0.7693	0.1928	0.104*
C23	0.3172 0.7414 (18)	0.7745(2)	0.3566 (15)	0.084(3)
C24	0 8651 (14)	0 7927 (3)	0 4403 (12)	0.087(3)
H24	0.9641	0.7858	0.5157	0.002 (3)
C25	0.8414 (11)	0.8229 (2)	0.4110 (9)	0.055
U25 H25	0.0257	0.0227 (2)	0.4660	0.009(3)
C26	0.5257 0.5420 (11)	0.87804 (17)	-0.0712(7)	0.002
020	0.3420 (11)	0.0/074(1/)	0.0712(7)	0.0494 (18)

H26A	0.4479	0.8922	-0.1101	0.059*
H26B	0.6118	0.8860	-0.0907	0.059*
C27	0.4760 (9)	0.84916 (16)	-0.1307 (7)	0.0440 (16)
C28	0.5399 (12)	0.8352 (2)	-0.1822 (8)	0.058 (2)
H28	0.6229	0.8440	-0.1798	0.069*
C29	0.4788 (13)	0.8078 (2)	-0.2377 (8)	0.066 (2)
H29	0.5196	0.7984	-0.2737	0.079*
C30	0.3596 (15)	0.7950 (2)	-0.2388 (9)	0.073 (3)
C31	0.2951 (13)	0.8087 (2)	-0.1873 (9)	0.069 (2)
H31	0.2128	0.7997	-0.1891	0.082*
C32	0.3555 (10)	0.83586 (18)	-0.1331 (8)	0.0534 (19)
H32	0.3136	0.8453	-0.0979	0.064*
C33	1.1616 (14)	0.8670(2)	0.1472 (10)	0.0653 (18)
H33A	1.1257	0.8843	0.0947	0.078*
H33B	1.2830	0.8668	0.2038	0.078*
C34	1.1027 (13)	0.8414 (2)	0.0609 (10)	0.0653 (18)
C35	1.1589 (13)	0.8136 (2)	0.1060 (9)	0.066 (2)
H35	1.2299	0.8102	0.1934	0.079*
C36	1.1128 (14)	0.7909 (2)	0.0253 (11)	0.074 (3)
H36	1.1493	0.7721	0.0569	0.089*
C37	1.0143 (14)	0.7959 (2)	-0.0998 (11)	0.073 (3)
C38	0.9535 (16)	0.8222 (3)	-0.1497 (11)	0.089 (3)
H38	0.8808	0.8249	-0.2375	0.107*
C39	1.0005 (14)	0.8453 (2)	-0.0687 (10)	0.072 (3)
H39	0.9623	0.8639	-0.1024	0.087*
C40	1.2385 (11)	0.8535 (2)	0.4489 (8)	0.060 (2)
H40A	1.3207	0.8676	0.5105	0.072*
H40B	1.1664	0.8490	0.4695	0.072*
C41	1.3267 (10)	0.82649 (17)	0.4604 (7)	0.0479 (17)
C42	1.4822 (11)	0.8276 (2)	0.4905 (9)	0.062 (2)
H42	1.5316	0.8456	0.5031	0.075*
C43	1.5658 (13)	0.8028 (3)	0.5021 (10)	0.077 (3)
H43	1.6709	0.8040	0.5236	0.092*
C44	1.4915 (17)	0.7767 (3)	0.4816 (10)	0.080 (3)
C45	1.3412 (15)	0.7739 (2)	0.4501 (10)	0.079 (3)
H45	1.2937	0.7556	0.4359	0.095*
C46	1.2565 (12)	0.7988 (2)	0.4388 (8)	0.062 (2)
H46	1.1511	0.7971	0.4164	0.074*
C47	0.5586 (14)	1.0005 (2)	0.4335 (10)	0.069 (3)
H47	0.5976	1.0009	0.3878	0.082*
C48	0.6669 (13)	0.99371 (17)	0.5618 (10)	0.060 (2)
H48	0.7787	0.9895	0.6031	0.072*
C49	0.6062 (14)	0.9934 (2)	0.6267 (9)	0.070 (3)
H49	0.6780	0.9889	0.7131	0.084*
	. 07			
Atomic displaceme	ent parameters (A^2)			

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
-		•		•	•

Sn1	0.0409 (3)	0.0400 (3)	0.0480 (3)	0.0006 (2)	0.0303 (2)	-0.0030 (2)
Sn2	0.0393 (3)	0.0357 (3)	0.0343 (3)	-0.00752 (19)	0.0230 (2)	-0.00782 (18)
Sn3	0.0391 (3)	0.0312 (3)	0.0435 (3)	-0.00509 (18)	0.0282 (2)	-0.00437 (18)
S1	0.0481 (11)	0.0596 (13)	0.1021 (19)	-0.0090 (10)	0.0509 (13)	-0.0123 (12)
S2	0.0542 (11)	0.0422 (10)	0.0713 (14)	0.0074 (9)	0.0413 (11)	-0.0030 (9)
S3	0.0691 (14)	0.0409 (10)	0.0666 (13)	-0.0066 (9)	0.0423 (12)	-0.0162 (9)
F1	0.134 (6)	0.089 (4)	0.103 (5)	-0.019 (4)	0.096 (5)	0.004 (4)
F2	0.127 (6)	0.101 (5)	0.041 (3)	-0.002 (4)	0.033 (3)	-0.019 (3)
F3	0.208 (10)	0.067 (5)	0.267 (12)	0.047 (5)	0.190 (10)	0.052 (6)
F4	0.156 (7)	0.060 (4)	0.091 (5)	-0.026 (4)	0.065 (5)	-0.032 (3)
F5	0.171 (8)	0.099 (5)	0.151 (7)	-0.044 (5)	0.123 (7)	-0.065 (5)
F6	0.142 (7)	0.101 (5)	0.115 (6)	0.059 (5)	0.080 (5)	0.009 (4)
01	0.033 (2)	0.032 (2)	0.045 (3)	-0.0005 (18)	0.022 (2)	-0.0051 (19)
O2	0.037 (3)	0.050 (3)	0.062 (3)	-0.009 (2)	0.032 (3)	-0.015 (3)
O3	0.046 (3)	0.035 (3)	0.062 (3)	-0.003 (2)	0.037 (3)	-0.005 (2)
N1	0.041 (3)	0.034 (3)	0.052 (3)	-0.001 (2)	0.035 (3)	-0.004 (2)
N2	0.037 (3)	0.035 (3)	0.039 (3)	-0.002(2)	0.023 (3)	-0.007 (2)
C1	0.047 (4)	0.044 (4)	0.059 (5)	0.001 (3)	0.040 (4)	0.003 (3)
C2	0.048 (4)	0.042 (4)	0.045 (4)	0.003 (3)	0.031 (4)	-0.006 (3)
C3	0.044 (4)	0.066 (6)	0.092 (7)	-0.005 (4)	0.047 (5)	-0.005 (5)
C4	0.069 (5)	0.036 (4)	0.062 (5)	0.016 (4)	0.041 (5)	-0.001 (4)
C5	0.057 (5)	0.061 (5)	0.040 (4)	-0.013 (4)	0.028 (4)	-0.017 (4)
C6	0.042 (4)	0.052 (4)	0.028 (3)	-0.002 (3)	0.020 (3)	-0.008 (3)
C7	0.057 (5)	0.052 (5)	0.048 (4)	0.003 (4)	0.037 (4)	0.002 (3)
C8	0.065 (5)	0.081 (6)	0.064 (5)	0.000 (5)	0.050 (5)	-0.002 (5)
С9	0.086 (7)	0.058 (5)	0.053 (5)	-0.013 (5)	0.049 (5)	-0.001 (4)
C10	0.079 (6)	0.054 (5)	0.050 (5)	0.006 (5)	0.037 (5)	0.005 (4)
C11	0.046 (4)	0.072 (6)	0.035 (4)	0.004 (4)	0.019 (4)	0.000 (4)
C12	0.058 (5)	0.050 (4)	0.050 (4)	-0.005 (4)	0.036 (4)	0.003 (4)
C13	0.049 (4)	0.036 (3)	0.040 (4)	0.006 (3)	0.031 (3)	0.005 (3)
C14	0.054 (5)	0.074 (6)	0.044 (4)	0.020 (4)	0.032 (4)	0.008 (4)
C15	0.099 (8)	0.070 (6)	0.052 (5)	0.028 (5)	0.056 (6)	0.007 (4)
C16	0.076 (6)	0.055 (5)	0.032 (4)	0.006 (4)	0.025 (4)	0.003 (3)
C17	0.046 (4)	0.049 (5)	0.045 (4)	0.005 (3)	0.019 (4)	0.014 (3)
C18	0.053 (4)	0.043 (4)	0.050 (4)	0.009(3)	0.038 (4)	0.007(3)
C19	0 103 (8)	0.062 (6)	0.088(7)	0.010(5)	0.080(7)	0.012(5)
C20	0.054(4)	0.002(0)	0.053(4)	-0.007(3)	0.042(4)	-0.002(3)
C21	0.055(5)	0.073 (6)	0.058 (5)	-0.017(5)	0.029(4)	0.002(5)
C22	0.101 (9)	0.062 (7)	0.124(10)	-0.026(6)	0.085 (9)	-0.014(7)
C23	0.105 (9)	0.051 (6)	0.121(10) 0.141(11)	0.010(6)	0.099 (9)	0.022(7)
C24	0.069(6)	0.092 (8)	0.105 (8)	0.033 (6)	0.064 (7)	0.022(7)
C25	0.009(0)	0.092(0)	0.065 (6)	-0.019(5)	0.001(7)	-0.005(5)
C26	0.050(5)	0.005(7)	0.003(0)	-0.007(3)	0.037(3)	-0.001(3)
C27	0.037(3)	0.043(4)	0.038(4)	-0.003(3)	0.032(1)	-0.002(3)
C28	0.045(4)	0.045 (4)	0.050(4)	0.003(3)	0.022(3)	-0.002(3)
C20	0.007(3)	0.062 (6)	0.030(3)	0.002(+)	0.037(+)	-0.007(4)
C29	0.000(7)	0.002(0)	0.047(3)	-0.007(3)	0.040 (3)	-0.013(4)
C31	0.055(6)	0.040(3)	0.054 (5)	-0.016 (5)	0.039(0)	-0.000(4)
C32	0.000(0)	0.057(3)	0.005(0)	-0.002(3)	0.033(3)	-0.005 (4)
032	0.032 (4)	0.030 (4)	0.030 (4)	-0.008 (4)	0.028 (4)	-0.000 (4)

C33	0.087 (5)	0.062 (4)	0.088 (5)	-0.019 (3)	0.075 (4)	-0.016 (3)
C34	0.087 (5)	0.062 (4)	0.088 (5)	-0.019 (3)	0.075 (4)	-0.016 (3)
C35	0.078 (6)	0.073 (6)	0.056 (5)	0.014 (5)	0.047 (5)	0.011 (4)
C36	0.098 (8)	0.050 (5)	0.104 (8)	0.020 (5)	0.078 (7)	0.017 (5)
C37	0.081 (7)	0.071 (6)	0.092 (8)	-0.018 (5)	0.066 (7)	-0.027 (6)
C38	0.094 (8)	0.101 (9)	0.054 (6)	0.001 (7)	0.038 (6)	-0.001 (6)
C39	0.089 (7)	0.061 (6)	0.070 (6)	0.022 (5)	0.052 (6)	0.022 (5)
C40	0.060 (5)	0.071 (6)	0.048 (5)	0.008 (4)	0.034 (4)	-0.002 (4)
C41	0.051 (4)	0.052 (5)	0.038 (4)	0.005 (3)	0.027 (4)	0.006 (3)
C42	0.049 (5)	0.074 (6)	0.059 (5)	-0.007 (4)	0.032 (4)	-0.005 (4)
C43	0.053 (5)	0.101 (9)	0.072 (6)	0.019 (5)	0.038 (5)	-0.004 (6)
C44	0.101 (9)	0.072 (7)	0.056 (6)	0.033 (6)	0.045 (6)	0.003 (5)
C45	0.090 (8)	0.051 (5)	0.067 (6)	-0.003 (5)	0.036 (6)	0.000 (5)
C46	0.063 (5)	0.078 (6)	0.043 (4)	0.006 (5)	0.032 (4)	0.008 (4)
C47	0.090 (7)	0.057 (5)	0.087 (7)	-0.032 (5)	0.069 (6)	-0.022 (5)
C48	0.070 (6)	0.039 (4)	0.083 (7)	-0.005 (4)	0.054 (5)	-0.003 (4)
C49	0.080 (7)	0.061 (6)	0.057 (5)	-0.015 (5)	0.037 (5)	0.000 (4)

Geometric parameters (Å, °)

Sn1—O1	2.044 (4)	C18—H18	0.9300
Sn1—O3	2.116 (5)	C19—C20	1.486 (12)
Sn1—C33	2.125 (8)	С19—Н19А	0.9700
Sn1—O2	2.131 (5)	С19—Н19В	0.9700
Sn1—C40	2.142 (9)	C20—C21	1.373 (12)
Sn2—O1	2.038 (5)	C20—C25	1.383 (12)
Sn2—C12	2.141 (7)	C21—C22	1.366 (15)
Sn2—C5	2.142 (7)	C21—H21	0.9300
Sn2—O2	2.184 (5)	C22—C23	1.312 (17)
Sn2—N2	2.225 (6)	С22—Н22	0.9300
Sn3—O1	2.054 (4)	C23—C24	1.334 (18)
Sn3—C26	2.127 (8)	C24—C25	1.419 (15)
Sn3—C19	2.150 (8)	C24—H24	0.9300
Sn3—O3	2.188 (5)	С25—Н25	0.9300
Sn3—N1	2.217 (5)	C26—C27	1.513 (10)
S1—C1	1.679 (8)	C26—H26A	0.9700
S2—C2	1.732 (8)	C26—H26B	0.9700
S2—C1	1.738 (8)	C27—C32	1.369 (11)
S3—C2	1.672 (8)	C27—C28	1.386 (11)
F1—C9	1.358 (10)	C28—C29	1.394 (13)
F2—C16	1.370 (10)	C28—H28	0.9300
F3—C23	1.367 (12)	C29—C30	1.357 (15)
F4—C30	1.342 (11)	С29—Н29	0.9300
F5—C37	1.371 (11)	C30—C31	1.386 (15)
F6—C44	1.357 (11)	C31—C32	1.381 (12)
O2—C3	1.454 (9)	C31—H31	0.9300
O3—C4	1.462 (9)	С32—Н32	0.9300
N1—C1	1.339 (9)	C33—C34	1.488 (12)
N1—N2	1.382 (8)	С33—Н33А	0.9700

N2—C2	1.349 (9)	С33—Н33В	0.9700
С3—НЗА	0.9600	C34—C39	1.373 (14)
С3—Н3В	0.9600	C34—C35	1.377 (13)
С3—НЗС	0.9600	C35—C36	1.360 (14)
C4—H4A	0.9600	С35—Н35	0.9300
C4—H4B	0.9600	C36—C37	1.334 (15)
C4—H4C	0.9600	С36—Н36	0.9300
C5—C6	1.506 (11)	C37—C38	1.331 (16)
С5—Н5А	0.9700	C38—C39	1.375 (15)
С5—Н5В	0.9700	C38—H38	0.9300
C6—C11	1.376 (12)	С39—Н39	0.9300
C6—C7	1.399 (11)	C40—C41	1.487 (12)
С7—С8	1.390 (12)	C40—H40A	0.9700
С7—Н7	0.9300	C40—H40B	0.9700
C8—C9	1.348 (13)	C41—C42	1.385 (12)
С8—Н8	0.9300	C41—C46	1.399 (12)
C9—C10	1.357 (14)	C42—C43	1.375 (14)
C10—C11	1.363 (13)	C42—H42	0.9300
C10—H10	0.9300	C43—C44	1.353 (17)
C11—H11	0.9300	С43—Н43	0.9300
C12—C13	1.500 (11)	C44—C45	1.330 (16)
C12—H12A	0.9700	C45—C46	1.389 (14)
C12—H12B	0.9700	C45—H45	0.9300
C13—C18	1.368 (10)	С46—Н46	0.9300
C13—C14	1.400 (10)	C47—C49 ⁱ	1.372 (15)
C14—C15	1.391 (13)	C47—C48	1.381 (14)
C14—H14	0.9300	С47—Н47	0.9300
C15—C16	1.366 (14)	C48—C49	1.368 (13)
С15—Н15	0.9300	C48—H48	0.9300
C16—C17	1.338 (13)	C49—C47 ⁱ	1.372 (15)
C17—C18	1.382 (11)	С49—Н49	0.9300
С17—Н17	0.9300		
Ω_1 —Sn1— Ω_3	73 36 (18)	C13—C18—C17	122.3 (7)
$\Omega_1 = Sn_1 = C_{33}$	123 9 (3)	C13—C18—H18	118.8
03 - 8n1 - C33	104 1 (3)	C17—C18—H18	118.8
$\Omega_1 - Sn_1 - \Omega_2$	71.11 (18)	C20—C19—Sn3	117.4 (6)
O3—Sn1—O2	144.2 (2)	С20—С19—Н19А	108.0
C33—Sn1—O2	92.0 (3)	Sn3—C19—H19A	108.0
O1—Sn1—C40	115.1 (3)	С20—С19—Н19В	108.0
O3—Sn1—C40	100.9 (3)	Sn3—C19—H19B	108.0
C33—Sn1—C40	120.1 (4)	H19A—C19—H19B	107.2
O2—Sn1—C40	98.1 (3)	C21—C20—C25	117.3 (8)
O1—Sn2—C12	114.1 (3)	C21—C20—C19	121.8 (9)
O1—Sn2—C5	113.1 (3)	C25—C20—C19	121.0 (8)
C12—Sn2—C5	132.4 (3)	C22—C21—C20	122.4 (10)
O1—Sn2—O2	70.13 (18)	C22—C21—H21	118.8
C12—Sn2—O2	95.7 (3)	C20—C21—H21	118.8
C5—Sn2—O2	94.9 (3)	C23—C22—C21	118.6 (11)

O1—Sn2—N2	80.20 (19)	С23—С22—Н22	120.7
C12—Sn2—N2	95.0 (3)	C21—C22—H22	120.7
C5—Sn2—N2	98.1 (3)	C22—C23—C24	124.0 (10)
O2—Sn2—N2	150.29 (19)	C22—C23—F3	119.5 (13)
O1—Sn3—C26	112.2 (3)	C24—C23—F3	116.5 (13)
O1—Sn3—C19	109.9 (4)	C23—C24—C25	118.1 (10)
C26—Sn3—C19	137.9 (4)	C23—C24—H24	121.0
O1—Sn3—O3	71.67 (18)	С25—С24—Н24	121.0
C26—Sn3—O3	94.1 (3)	C20—C25—C24	119.6 (9)
C19—Sn3—O3	97.0 (3)	С20—С25—Н25	120.2
O1—Sn3—N1	79.50 (19)	С24—С25—Н25	120.2
C26—Sn3—N1	95.9 (3)	C27—C26—Sn3	114.6 (5)
C19—Sn3—N1	93.6 (3)	С27—С26—Н26А	108.6
O3—Sn3—N1	151.2 (2)	Sn3—C26—H26A	108.6
C2—S2—C1	91.9 (4)	С27—С26—Н26В	108.6
Sn2—O1—Sn1	113.8 (2)	Sn3—C26—H26B	108.6
Sn2—O1—Sn3	134.9 (2)	H26A—C26—H26B	107.6
Sn1—O1—Sn3	111.3 (2)	C32—C27—C28	119.9 (8)
C3—O2—Sn1	127.1 (5)	C32—C27—C26	120.7 (7)
C3—O2—Sn2	127.8 (5)	C28—C27—C26	119.4 (7)
Sn1—O2—Sn2	104.8 (2)	C27—C28—C29	119.6 (9)
C4—O3—Sn1	129.8 (5)	C27—C28—H28	120.2
C4—O3—Sn3	126.5 (5)	C29—C28—H28	120.2
Sn1—O3—Sn3	103.6 (2)	C30—C29—C28	119.6 (9)
C1—N1—N2	114.5 (6)	С30—С29—Н29	120.2
C1—N1—Sn3	121.9 (5)	С28—С29—Н29	120.2
N2—N1—Sn3	123.6 (4)	F4—C30—C29	120.6 (10)
C2—N2—N1	114.3 (6)	F4—C30—C31	118.0 (11)
C2—N2—Sn2	123.9 (5)	C29—C30—C31	121.4 (9)
N1—N2—Sn2	121.5 (4)	C32—C31—C30	118.7 (9)
N1—C1—S1	124.3 (6)	С32—С31—Н31	120.7
N1—C1—S2	109.7 (5)	C30—C31—H31	120.7
S1—C1—S2	126.0 (5)	C27—C32—C31	120.9 (9)
N2—C2—S3	123.6 (6)	С27—С32—Н32	119.6
N2—C2—S2	109.6 (5)	С31—С32—Н32	119.6
S3—C2—S2	126.8 (4)	C34—C33—Sn1	120.9 (6)
О2—С3—НЗА	109.5	С34—С33—Н33А	107.1
O2—C3—H3B	109.5	Sn1—C33—H33A	107.1
НЗА—СЗ—НЗВ	109.5	С34—С33—Н33В	107.1
O2—C3—H3C	109.5	Sn1—C33—H33B	107.1
НЗА—СЗ—НЗС	109.5	H33A—C33—H33B	106.8
H3B—C3—H3C	109.5	C39—C34—C35	117.0 (9)
O3—C4—H4A	109.5	C39—C34—C33	120.3 (9)
O3—C4—H4B	109.5	C35—C34—C33	122.5 (10)
H4A—C4—H4B	109.5	C36—C35—C34	121.4 (9)
O3—C4—H4C	109.5	С36—С35—Н35	119.3
H4A—C4—H4C	109.5	С34—С35—Н35	119.3
H4B—C4—H4C	109.5	C37—C36—C35	119.1 (9)
C6—C5—Sn2	112.1 (5)	С37—С36—Н36	120.4
	· · ·		

С6—С5—Н5А	109.2	С35—С36—Н36	120.4
Sn2—C5—H5A	109.2	C38—C37—C36	122.5 (10)
C6—C5—H5B	109.2	C38—C37—F5	118.1 (11)
Sn2—C5—H5B	109.2	C36—C37—F5	119.4 (11)
H5A—C5—H5B	107.9	C37—C38—C39	118.6 (10)
C11—C6—C7	116.7 (7)	С37—С38—Н38	120.7
C11—C6—C5	123.9 (7)	С39—С38—Н38	120.7
C7—C6—C5	119.3 (7)	C34—C39—C38	121.3 (10)
C8—C7—C6	120.6 (8)	С34—С39—Н39	119.3
С8—С7—Н7	119.7	С38—С39—Н39	119.3
С6—С7—Н7	119.7	C41—C40—Sn1	113.2 (5)
C9—C8—C7	119.6 (9)	C41—C40—H40A	108.9
С9—С8—Н8	120.2	Sn1C40H40A	108.9
С7—С8—Н8	120.2	C41—C40—H40B	108.9
C8—C9—C10	121.1 (8)	Sn1—C40—H40B	108.9
C8—C9—F1	119.3 (9)	H40A—C40—H40B	107.8
C10—C9—F1	119.6 (9)	C42—C41—C46	116.4 (8)
C9—C10—C11	119.6 (9)	C42—C41—C40	121.3 (8)
С9—С10—Н10	120.2	C46—C41—C40	122.3 (8)
C11—C10—H10	120.2	C43—C42—C41	122.0 (9)
C10—C11—C6	122.3 (8)	C43—C42—H42	119.0
C10-C11-H11	118.9	C41—C42—H42	119.0
C6—C11—H11	118.9	C44—C43—C42	118.4 (10)
C13—C12—Sn2	112.0 (5)	C44—C43—H43	120.8
C13—C12—H12A	109.2	C42—C43—H43	120.8
Sn2—C12—H12A	109.2	C45—C44—C43	123.2 (10)
C13—C12—H12B	109.2	C45—C44—F6	118.4 (12)
Sn2—C12—H12B	109.2	C43—C44—F6	118.5 (12)
H12A—C12—H12B	107.9	C44—C45—C46	118.7 (10)
C18—C13—C14	117.8 (7)	C44—C45—H45	120.7
C18—C13—C12	122.0 (7)	C46—C45—H45	120.7
C14—C13—C12	120.1 (7)	C45—C46—C41	121.3 (9)
C15—C14—C13	120.0 (8)	C45—C46—H46	119.3
C15—C14—H14	120.0	C41—C46—H46	119.3
C13—C14—H14	120.0	C49 ⁱ —C47—C48	120.2 (9)
C16—C15—C14	118.7 (8)	C49 ⁱ —C47—H47	119.9
C16—C15—H15	120.7	C48—C47—H47	119.9
C14 - C15 - H15	120.7	C49 - C48 - C47	118.7 (9)
C17—C16—C15	122.8 (8)	C49—C48—H48	120.7
C17—C16—F2	119.8 (9)	C47—C48—H48	120.7
C_{15} C_{16} F_{2}	117.4 (9)	C_{48} C_{49} C_{47}^{i}	121.1 (9)
$C_{13}^{16} = C_{17}^{17} = C_{18}^{18}$	117.4 (9)	$C_{40} = C_{49} = C_{47}$	121.1 ())
	110.5 (6)		119.4
	120.9	C47 ⁴ —C49—H49	119.4
C18—C17—H17	120.9		
C12—Sn2—O1—Sn1	90.6 (3)	Sn2—C5—C6—C7	-86.0 (8)
C5—Sn2—O1—Sn1	-83.6 (3)	C11—C6—C7—C8	-3.7 (12)
O2—Sn2—O1—Sn1	3.2 (2)	C5—C6—C7—C8	179.8 (7)
N2—Sn2—O1—Sn1	-178.3 (3)	C6—C7—C8—C9	1.8 (13)

C12—Sn2—O1—Sn3	-88.3 (4)	C7—C8—C9—C10	1.0 (14)
C5—Sn2—O1—Sn3	97.5 (4)	C7—C8—C9—F1	179.6 (8)
O2—Sn2—O1—Sn3	-175.7 (4)	C8—C9—C10—C11	-1.7 (14)
N2—Sn2—O1—Sn3	2.8 (3)	F1	179.7 (8)
O3—Sn1—O1—Sn2	-178.6 (3)	C9—C10—C11—C6	-0.4 (13)
C33—Sn1—O1—Sn2	-82.6 (4)	C7—C6—C11—C10	3.0 (12)
O2—Sn1—O1—Sn2	-3.3 (2)	C5-C6-C11-C10	179.4 (7)
C40—Sn1—O1—Sn2	87.0 (4)	O1—Sn2—C12—C13	15.3 (7)
O3—Sn1—O1—Sn3	0.6 (2)	C5—Sn2—C12—C13	-171.9 (5)
C33—Sn1—O1—Sn3	96.6 (4)	O2—Sn2—C12—C13	86.1 (6)
O2—Sn1—O1—Sn3	175.9 (3)	N2-Sn2-C12-C13	-66.2 (6)
C40—Sn1—O1—Sn3	-93.8 (4)	Sn2—C12—C13—C18	78.7 (8)
C26—Sn3—O1—Sn2	91.4 (4)	Sn2-C12-C13-C14	-98.4 (8)
C19—Sn3—O1—Sn2	-90.7 (4)	C18—C13—C14—C15	1.5 (12)
O3—Sn3—O1—Sn2	178.4 (4)	C12-C13-C14-C15	178.6 (8)
N1—Sn3—O1—Sn2	-0.7 (3)	C13-C14-C15-C16	-2.0 (14)
C26—Sn3—O1—Sn1	-87.5 (3)	C14—C15—C16—C17	2.0 (15)
C19—Sn3—O1—Sn1	90.4 (3)	C14—C15—C16—F2	-178.3 (8)
O3—Sn3—O1—Sn1	-0.6 (2)	C15-C16-C17-C18	-1.3 (13)
N1—Sn3—O1—Sn1	-179.6 (3)	F2-C16-C17-C18	178.9 (8)
O1—Sn1—O2—C3	-171.4 (7)	C14—C13—C18—C17	-0.9 (11)
O3—Sn1—O2—C3	-163.7 (6)	C12—C13—C18—C17	-178.0 (7)
C33—Sn1—O2—C3	-46.1 (7)	C16-C17-C18-C13	0.8 (12)
C40—Sn1—O2—C3	74.7 (7)	O1—Sn3—C19—C20	-101.4 (8)
O1—Sn1—O2—Sn2	2.9 (2)	C26—Sn3—C19—C20	75.6 (10)
O3—Sn1—O2—Sn2	10.6 (5)	O3—Sn3—C19—C20	-28.5 (8)
C33—Sn1—O2—Sn2	128.3 (4)	N1—Sn3—C19—C20	178.4 (8)
C40—Sn1—O2—Sn2	-111.0 (3)	Sn3—C19—C20—C21	-78.9 (10)
O1—Sn2—O2—C3	171.3 (7)	Sn3—C19—C20—C25	102.9 (9)
C12—Sn2—O2—C3	57.8 (7)	C25—C20—C21—C22	-0.8 (14)
C5—Sn2—O2—C3	-75.8 (7)	C19—C20—C21—C22	-179.0 (9)
N2—Sn2—O2—C3	168.3 (6)	C20—C21—C22—C23	1.5 (17)
O1—Sn2—O2—Sn1	-2.9 (2)	C21—C22—C23—C24	-1.0 (19)
C12—Sn2—O2—Sn1	-116.5 (3)	C21—C22—C23—F3	178.0 (10)
C5—Sn2—O2—Sn1	109.9 (3)	C22—C23—C24—C25	-0.1 (18)
N2—Sn2—O2—Sn1	-6.0 (5)	F3—C23—C24—C25	-179.1 (9)
O1—Sn1—O3—C4	-178.4 (7)	C21—C20—C25—C24	-0.3 (13)
C33—Sn1—O3—C4	59.9 (7)	C19—C20—C25—C24	177.9 (8)
O2—Sn1—O3—C4	174.0 (6)	C23—C24—C25—C20	0.8 (15)
C40—Sn1—O3—C4	-65.2 (7)	O1—Sn3—C26—C27	129.7 (5)
O1—Sn1—O3—Sn3	-0.52 (19)	C19—Sn3—C26—C27	-47.3 (8)
C33—Sn1—O3—Sn3	-122.2 (3)	O3—Sn3—C26—C27	57.9 (6)
O2—Sn1—O3—Sn3	-8.1 (5)	N1—Sn3—C26—C27	-149.2 (6)
C40—Sn1—O3—Sn3	112.7 (3)	Sn3—C26—C27—C32	67.6 (9)
O1—Sn3—O3—C4	178.5 (6)	Sn3—C26—C27—C28	-111.9 (7)
C26—Sn3—O3—C4	-69.5 (6)	C32—C27—C28—C29	0.9 (12)
C19—Sn3—O3—C4	69.8 (7)	C26—C27—C28—C29	-179.7 (8)
N1—Sn3—O3—C4	-179.7 (5)	C27—C28—C29—C30	-1.0 (14)
O1—Sn3—O3—Sn1	0.5 (2)	C28—C29—C30—F4	180.0 (9)

C26—Sn3—O3—Sn1	112.6 (3)	C28—C29—C30—C31	0.9 (15)	
C19—Sn3—O3—Sn1	-108.2 (4)	F4—C30—C31—C32	-179.6 (9)	
N1—Sn3—O3—Sn1	2.4 (6)	C29—C30—C31—C32	-0.5 (15)	
O1—Sn3—N1—C1	177.6 (6)	C28—C27—C32—C31	-0.5 (13)	
C26—Sn3—N1—C1	66.1 (6)	C26—C27—C32—C31	-179.9 (8)	
C19—Sn3—N1—C1	-72.8 (6)	C30—C31—C32—C27	0.3 (14)	
O3—Sn3—N1—C1	175.8 (5)	O1—Sn1—C33—C34	-102.5 (9)	
O1—Sn3—N1—N2	-3.7 (5)	O3—Sn1—C33—C34	-23.2 (10)	
C26—Sn3—N1—N2	-115.2 (5)	O2—Sn1—C33—C34	-170.9 (9)	
C19—Sn3—N1—N2	105.9 (6)	C40—Sn1—C33—C34	88.5 (10)	
O3—Sn3—N1—N2	-5.5 (8)	Sn1—C33—C34—C39	116.1 (9)	
C1—N1—N2—C2	-0.4 (9)	Sn1—C33—C34—C35	-70.0 (12)	
Sn3—N1—N2—C2	-179.2 (5)	C39—C34—C35—C36	-1.1 (15)	
C1—N1—N2—Sn2	-174.6 (5)	C33—C34—C35—C36	-175.1 (9)	
Sn3—N1—N2—Sn2	6.6 (7)	C34—C35—C36—C37	1.7 (16)	
O1—Sn2—N2—C2	-178.7 (6)	C35—C36—C37—C38	-2.8 (17)	
C12—Sn2—N2—C2	-65.0 (6)	C35—C36—C37—F5	178.9 (9)	
C5—Sn2—N2—C2	69.1 (6)	C36—C37—C38—C39	3.2 (19)	
O2—Sn2—N2—C2	-175.8 (5)	F5-C37-C38-C39	-178.5 (10)	
O1—Sn2—N2—N1	-5.1 (5)	C35—C34—C39—C38	1.5 (16)	
C12—Sn2—N2—N1	108.5 (5)	C33—C34—C39—C38	175.7 (10)	
C5—Sn2—N2—N1	-117.3 (5)	C37—C38—C39—C34	-2.5 (19)	
O2—Sn2—N2—N1	-2.2 (8)	O1—Sn1—C40—C41	160.7 (6)	
N2—N1—C1—S1	179.8 (5)	O3—Sn1—C40—C41	84.1 (7)	
Sn3—N1—C1—S1	-1.4 (9)	C33—Sn1—C40—C41	-29.3 (8)	
N2—N1—C1—S2	0.0 (8)	O2—Sn1—C40—C41	-126.4 (6)	
Sn3—N1—C1—S2	178.8 (3)	Sn1-C40-C41-C42	86.6 (9)	
C2—S2—C1—N1	0.3 (6)	Sn1-C40-C41-C46	-91.9 (8)	
C2—S2—C1—S1	-179.5 (6)	C46—C41—C42—C43	-1.8 (13)	
N1—N2—C2—S3	179.9 (5)	C40—C41—C42—C43	179.7 (8)	
Sn2—N2—C2—S3	-6.1 (9)	C41—C42—C43—C44	1.0 (15)	
N1—N2—C2—S2	0.6 (8)	C42—C43—C44—C45	0.3 (16)	
Sn2—N2—C2—S2	174.6 (3)	C42—C43—C44—F6	-178.9 (9)	
C1—S2—C2—N2	-0.5 (6)	C43—C44—C45—C46	-0.6 (16)	
C1—S2—C2—S3	-179.7 (6)	F6-C44-C45-C46	178.6 (9)	
O1—Sn2—C5—C6	-29.7 (7)	C44—C45—C46—C41	-0.3 (15)	
C12—Sn2—C5—C6	157.5 (5)	C42—C41—C46—C45	1.5 (12)	
O2—Sn2—C5—C6	-100.2 (6)	C40—C41—C46—C45	180.0 (8)	
N2—Sn2—C5—C6	53.1 (6)	C49 ⁱ —C47—C48—C49	-0.1 (15)	
Sn2—C5—C6—C11	97.7 (8)	C47—C48—C49—C47 ⁱ	0.1 (15)	
Symmetry codes: (i) $-x+1, -y+2, -z+1$.				

